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Abstract

Investigated in this paper are the initial stages of the laminar, two-dimensional, thermal-fluid problem of forced and

mixed convective heat transfer from accelerated flow past an elliptic cylinder. The cylinder is taken to be inclined at an

angle g with the horizontal and the viscous incompressible Boussinesq fluid accelerates uniformly from rest past it. Two

types of solutions are presented. The first type takes the form of an approximate analytical solution valid for small times

and large Reynolds numbers. The second type is a numerical solution obtained by numerically integrating the full

Navier–Stokes and energy equations using a spectral-finite difference procedure.

� 2003 Elsevier Science Ltd. All rights reserved.

1. Introduction

In this paper we investigate forced and mixed con-

vective heat transfer from an inclined elliptic cylinder.

The cylinder is inclined at an angle g with the horizontal,
and starting from rest, accelerates uniformly through a

viscous incompressible fluid. The fluid motion remains

two-dimensional and laminar for all time and the cyl-

inder motion is perpendicular to the gravitational ac-

celeration. Also, the temperature of the cylinder surface

is constant and is taken to be higher than that of the

surrounding fluid. The flow configuration is illustrated

in Fig. 1. As shown in Fig. 1, a frame of reference that

translates with the cylinder has been employed so as to

simplify the boundary conditions on the surface. In this

frame the cylinder is stationary while the fluid acceler-

ates past it; this is the problem that we will solve. The

emphasis here is on the initial development of the flow

and of the heat transfer process. Although the problem

described is idealized and highly simplified, it is none-

theless general enough to encompass all elliptical cross

sections between the limiting cases of a circular cylinder

and a flat plate. Also, it is a reasonable prototypical

model for simulating the thermal-fluid start-up of a cy-

lindrical body from rest, and for studying important

aspects of unsteady flow separation. One purpose of the

present study is to reconcile numerical solutions of the

Navier–Stokes and energy equations with an analytic

solution which is valid for small times following the start

of the motion and for large Reynolds numbers, R. In
addition, this study also serves as a good approximation

for other more complicated initial flows. For example,

the oscillating flow having the far-field velocity given by

UðtÞ ¼ U0 sinðctÞ is well approximated by UðtÞ � U0ct
for small times. Hence, its initial flow structure should

mirror that presented in this work (with b ¼ U0c).
Other studies regarding accelerating flows past cy-

lindrical bodies include: Collins and Dennis [1], Badr

et al. [2] and more recently D�Alessio and Chapman [3].
The work by Collins and Dennis considers symmetrical

flow past a uniformly accelerating circular cylinder while

the paper by Badr et al. considers a circular cylinder

moving with speed varying according to UðtÞ ¼ U0þ
U1t þ U2t2. The work by D�Alessio and Chapman ad-
dresses uniformly accelerating motion past an inclined

elliptic cylinder. The present study represents an exten-

sion of that problem to incorporate heat transfer effects.

Concerning uniform flows past elliptic cylinders, recent
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studies include Patel [4], Shintani et al. [5], D�Alessio [6],
Nair and Sengupta [7], and Badr et al. [8].

In the literature there are numerous heat transfer

studies involving cylinders and forced, free or mixed

convection. Here, we will highlight only some of the

more recent mixed convection papers. For the circular

geometry these include the investigations by Badr [9],

Bassam and Abu-Hijleh [10,11] and Badr and Mahfouz

[12]. These are all numerical studies where the far-field

flow is either uniform or fluctuating periodically about a

uniform background flow. Nguyen et al. [13], on the

other hand, consider mixed convection from a rotating

circular cylinder undergoing small fluctuations in the

free-stream velocity. For the elliptic geometry there is a

recent numerical study by Ahmad and Badr [14] in-

volving mixed convection in a fluctuating free stream

and a work by Nishiyama et al. [15] dealing with elliptic

cylinders in a tandem arrangement, to mention just two.

To our knowledge there are no prior studies devoted to

heat transfer from accelerating flows past elliptic cylin-

ders. This work attempts to introduce the problem and

offers both numerical and analytical solutions to the

initial flow and heat transfer process.

The paper is structured as follows. Presented in the

next section are the governing equations, with their

corresponding initial and boundary conditions. A con-

venient coordinate system for the elliptic geometry is

also introduced. The analytical solution procedure is

then discussed in Section 3. This first involves casting the

equations in boundary-layer coordinates which incor-

Nomenclature

a1, a2, a3 numerical constants
A, B, A0, B0, A1, B1 functions defined by Eqs. (9),

(10), (25), (36)

b uniform rate of acceleration

c semi-focal length

CD drag coefficient

CL lift coefficient

E1, E2 functions used in Eq. (49)

fn, Fn Fourier coefficients for the stream function

g gravitational acceleration

~gg gravitational vector

G scalar potential function

H , h arbitrary functions used in Eqs. (28), (68)

K function defined by Eq. (49)

M metric of transformation

M0 metric of transformation evaluated on the

cylinder surface

n, m cylinder semi-minor, semi-major axes re-

spectively

N � L used to denote the grid size

Nf number of terms retained in Fourier series

Nu local Nusselt number

Nu average Nusselt number

p arbitrary function used in Eq. (68)

P pressure

P � scaled pressure

Pr Prandtl number, m=j
q function representing right-hand side

r aspect ratio, n=m
rn, sn Fourier coefficients for the vorticity

R Reynolds number, 2c
ffiffiffiffiffi
cb

p
=m

Ra Rayleigh number, agðT0 	 T1Þ=b
s scaled coordinate, s ¼ M0z
t time

T dimensional temperature

x, y Cartesian coordinates

X , Y drag and lift forces along major and minor

axis

u, v velocity components
~VV velocity vector
~WW vorticity vector

z scaled coordinate

z1 outer boundary location used in numerical

scheme

Greek symbols

a thermal expansion coefficient

b computational parameter, nk
d1;n Kronecker delta

Dt time increment in numerical scheme

j thermal diffusivity

m kinematic viscosity

n, h elliptic coordinates

n0 constant defined by Eq. (4)

g angle of inclination

k scaling parameter,
ffiffiffiffiffiffiffiffiffiffi
8t=R

p
/ dimensionless temperature, ðT 	 T1Þ=

ðT0 	 T1Þ
U scaled dimensionless temperature

w stream function

W scaled stream function

f vorticity

x scaled vorticity

v generic flow variable

Subscripts

0 surface value or leading order terms

1 value at infinity

ij terms in the series (34)

Superscript

� dimensional quantity
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porate the parameter k ¼
ffiffiffiffiffiffiffiffiffiffi
8t=R

p
and then expanding

the flow variables in a double series. In Section 4 a nu-

merical method for solving the governing equations is

provided. The technique employed is a spectral––finite

difference scheme specifically designed to capture the

early stages of the flow. Following this is the ‘‘Results

and comparisons’’ Section 5. There, the numerical so-

lution is compared with the analytical solution using

derived quantities such as the drag, lift and heat trans-

fer coefficients. Lastly, the paper is summarized in Sec-

tion 6.

2. Governing equations and boundary conditions

The problem under consideration is assumed to be

two-dimensional, and therefore it is worth expressing the

governing Navier–Stokes equations in terms of a stream

function w and scalar vorticity f. The dimensionless
functions w and f are related to their dimensional

counterparts w� and f� through the scaling

w� ¼ c
ffiffiffiffiffi
cb

p
w; f� ¼

ffiffiffiffiffi
cb

p
f=c; ð1Þ

where 2c is the focal length of the ellipse and

c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 	 n2

p
with m and n denoting the semi-major and

semi-minor axis lengths respectively. Here, b refers to

the uniform rate of acceleration of the oncoming flow.

The dimensionless velocity components u, v are obtained
by dividing the corresponding dimensional components

u�, v� by
ffiffiffiffiffi
cb

p
. The dimensional temperature T is ren-

dered dimensionless through

/ ¼ T 	 T1
T0 	 T1

; ð2Þ

with / denoting the dimensionless temperature, and T0,
T1 denoting the constant surface and far-field temper-

atures respectively (and T0 > T1). The temperature dif-

ference T0 	 T1 gives rise to the buoyancy force which

will also induce fluid motion.

The Cartesian coordinate system is not convenient

for either analytical or numerical purposes. Instead, we

introduce a conformal transformation which generates a

coordinate system that is better suited to the geometry of

the problem:

xþ iy ¼ cosh½ðn þ n0Þ þ ih�: ð3Þ

This transformation maps the surface of the cylinder to

n ¼ 0 and the infinite region exterior to the cylinder to

the semi-infinite rectangular strip n P 0, 06 h6 2p. The
constant n0 appearing in (3) is defined by

tanh n0 ¼ r; ð4Þ

where r ¼ n=m is the ratio of the minor to major axes of

the ellipse. In the transformed coordinates ðn; hÞ the
equations dictating the fluid motion are:

o2w

on2
þ o2w

oh2
¼ M2f; ð5Þ

of
ot

¼ 1

M2

�
	 ow

on
of
oh

þ ow
oh

of
on

þ 2

R
o2f

on2

�
þ o2f

oh2

�

þ Ra A
o/
on

�
	 B

o/
oh

��
; ð6Þ

o/
ot

¼ 1

M2

�
	 ow

on
o/
oh

þ ow
oh

o/
on

þ 2

RPr
o2/

on2

�
þ o2/

oh2

��
;

ð7Þ

where M refers to the metric of the transformation given

by

M2ðn; hÞ ¼ 1

2
½cosh 2ðn þ n0Þ 	 cosð2hÞ� ð8Þ

Fig. 1. Flow set up.
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and the functions A, B are defined by

Aðn; hÞ ¼ sinhðn þ n0Þ cos g cos h 	 coshðn þ n0Þ
� sin g sin h; ð9Þ

Bðn; hÞ ¼ coshðn þ n0Þ cos g sin h þ sinhðn þ n0Þ
� sin g cos h: ð10Þ

The velocity components ðvn; vhÞ in the directions of

ðn; hÞ become

vn ¼ 	 1

M
ow
oh

; vh ¼
1

M
ow
on

ð11Þ

and the vorticity is found through

f ¼ 1

M2

�
	 o

oh
ðMvnÞ þ

o

on
ðMvhÞ

�
: ð12Þ

In the above system, the dimensionless time t is related
to the dimensional time t� through t ¼

ffiffiffi
b

p
t�=

ffiffiffi
c

p
and the

familiar dimensionless parameters appearing in the

equations include:

R ¼ 2c
ffiffiffiffiffi
cb

p

m
; Ra ¼ agðT0 	 T1Þ

b
; Pr ¼ m

j
ð13Þ

and denote the Reynolds, Rayleigh and Prandtl num-

bers respectively. Here, m refers to the kinematic vis-

cosity, g the acceleration due to gravity, a the thermal
expansion coefficient of the fluid, and j refers to the

thermal diffusivity of the fluid. We point out that im-

plicit in Eqs. (5)–(7) are the simplifications that all the

fluid properties, with the exception of density, are taken

to be constant in the temperature range T0 < T < T1,

viscous dissipation and radiative effects are neglected,

and the buoyancy force is prescribed using the Bous-

sinesq approximation. Also, the effects due to heat

conduction in the cylinder interior are ignored.

Surface boundary conditions corresponding to w, f
and / include the no-slip, impermeable and isothermal

conditions

w ¼ 0;
ow
on

¼ 0 and / ¼ 1 on n ¼ 0: ð14Þ

We also invoke the periodicity conditions given by

wðn; h; tÞ ¼ wðn; h þ 2p; tÞ;
fðn; h; tÞ ¼ fðn; h þ 2p; tÞ;
/ðn; h; tÞ ¼ /ðn; h þ 2p; tÞ:

ð15Þ

Next, the far-field conditions to be enforced are

e	n ow
on

! 1

2
ten0 sinðh þ gÞ; e	n ow

oh
! 1

2
ten0 cosðh þ gÞ;

f;/ ! 0 as n ! 1: ð16Þ

The above conditions correspond to a far-field fluid

velocity that increases linearly with time (in accordance

with the uniform rate of acceleration), and as such the

far-field vorticity vanishes, as does the scaled tempera-

ture. By inspecting the boundary conditions we see that

there are two surface conditions for the stream function,

but none for the vorticity. A method of determining the

surface vorticity involves the use of integral conditions.

These global conditions are given by

1

p

Z 1

0

Z 2p

0

e	nnM2f sinðnhÞdhdn ¼ ten0 cosðgÞd1;n;

n ¼ 1; 2; . . . ;

1

p

Z 1

0

Z 2p

0

e	nnM2f cosðnhÞdhdn ¼ ten0 sinðgÞd1;n;

n ¼ 0; 1; . . . ;

ð17Þ

where d1;n is the Kronecker delta defined as

d1;n ¼
1 if n ¼ 1;
0 if n 6¼ 1:

�
ð18Þ

Basically, we have converted the boundary condi-

tions on the surface and at large distances into condi-

tions that are valid throughout the entire domain. This

was accomplished by using Green�s second identity, the
details of which are contained in Dennis and Quartapelle

[16]. Later, we will explain how these integral conditions

can be used in determining the surface vorticity.

Lastly, we specify the initial conditions. Since the

fluid motion starts from rest, the initial conditions for w
and f are simply

wðn; h; t ¼ 0Þ ¼ fðn; h; t ¼ 0Þ ¼ 0: ð19Þ

The initial temperature distribution, on the other

hand, will be given by

/ðn; h; t ¼ 0Þ ¼ 1 on n ¼ 0;
0 for n 6¼ 0:

�
ð20Þ

It is clear that this initial distribution is singular; this

will have consequences on the initial heat transfer pro-

cess and will be addressed in the following sections.

3. Analytical solution procedure

There are several well known analytical techniques

available for deriving approximate solutions for the

early development of the flow and heat transfer process.

For example, the methods of successive approximation,

multiple series expansion and matched asymptotic ex-

pansions are all appropriate choices for this problem.

We have decided to utilize the multiple series expansion

method taking advantage of the fact that it leads to a set

of what are effectively linear ordinary differential equa-

tions, exhibiting an obvious pattern.
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To help the reader appreciate the details of the

multiple series expansion, it is worth mentioning how

the leading order terms w0, f0 and /0 can be reasoned.

By examining Eqs. (5)–(7) and making the usual

boundary-layer type approximations, these equations

simplify to

o2w0

on2
¼ M2

0 f0; ð21Þ

of0
ot

¼ 1

M2
0

2

R
o2f0
on2

�
þ RaA0

o/0

on

�
; ð22Þ

o/0

ot
¼ 2

M2
0RPr

o2/0

on2
; ð23Þ

where

M2
0 ðhÞ ¼ M2ðn ¼ 0; hÞ ¼ 1

2
½coshð2n0Þ 	 cosð2hÞ�; ð24Þ

A0ðhÞ ¼ Aðn ¼ 0; hÞ
¼ sinh n0 cos g cos h 	 cosh n0 sin g sin h: ð25Þ

The solution to this system of coupled partial dif-

ferential equations can be found by first solving the

heat equation (23). The similarity solution satisfying

the boundary conditions (14) and (16) is easily found to

be

/0ðn; h; tÞ ¼ 1	 erf

ffiffiffiffiffi
Pr

p
M0nffiffiffiffiffiffiffiffiffiffi
8t=R

p
 !

¼ erfc

ffiffiffiffiffi
Pr

p
M0nffiffiffiffiffiffiffiffiffiffi
8t=R

p
 !

;

ð26Þ

where

erfðxÞ ¼ 2ffiffiffi
p

p
Z x

0

e	u2 du; ð27Þ

is the error function. Substituting this solution into Eq.

(22) yields another heat equation, this time with a source

term. The particular solution corresponding to the

source term will have a relatively simple form when

Pr ¼ 1. For this reason we set Pr ¼ 1 and arrive at the

following similarity solution:

f0ðn; h; tÞ ¼
tffiffiffiffiffiffiffiffiffiffi
8t=R

p 1ffiffiffi
p

p
M0

exp
	M2

0n
2

8t=R

� �"

	 nffiffiffiffiffiffiffiffiffiffi
8t=R

p erfc
M0nffiffiffiffiffiffiffiffiffiffi
8t=R

p
 !#

HðhÞ

þ 2RaA0tffiffiffiffiffiffiffiffiffiffi
8t=R

p 1ffiffiffi
p

p
M0

exp
	M2

0n
2

8t=R

� �"

	 2nffiffiffiffiffiffiffiffiffiffi
8t=R

p erfc
M0nffiffiffiffiffiffiffiffiffiffi
8t=R

p
 !#

; ð28Þ

where HðhÞ is an arbitrary function which can be de-
termined by imposing the integral conditions (17).

Lastly, the stream function w0 can then easily be found

by substituting (28) into Eq. (21) and applying the

boundary conditions (14). These details will not be

presented since the relevant scaling information is al-

ready present in the solutions given by (26) and (28).

The procedure just outlined represents the first stage

in the method of successive approximation. The simi-

larity solutions obtained suggest that we consider the

similarity variable z defined by

z ¼ n
k

where k ¼
ffiffiffiffi
8t
R

r
: ð29Þ

The spatial coordinate z can be referred to as a

boundary-layer coordinate. The parameter k describes

the diffusive growth of the evolving boundary layer. An

advantage of working in terms of the boundary-layer

coordinate z is that the physical coordinate n becomes a
moving coordinate; that is, lines of constant z expand in
time when plotted in a Cartesian coordinate system.

This is ideal from a numerical point of view, since the

grid lines are allowed to expand with the growing

boundary layer to ensure adequate resolution during the

early stages of the flow.

We now formally discuss the multiple series expan-

sion method. We begin by making the following change

of variables:

n ¼ kz; w ¼ kW; f ¼ x=k: ð30Þ

This transformation stretches the thin boundary layer

and rescales the stream function and vorticity. The re-

scaling of the vorticity is also suggested from the simi-

larity solution given by (28), while the corresponding

rescaling of the stream function follows immediately

from Eq. (21). It has also been used successfully in other

studies such as Staniforth [17], Badr and Dennis [18],

D�Alessio et al. [19] and D�Alessio and Kocabiyik [20],
to list a few. It is worth pointing out that while / could

also be rescaled like f, the boundary conditions

/ðn ¼ 0; h; tÞ ¼ 1 and / ! 0 as n ! 1 suggest that / is

Oð1Þ and so rescaling / is not necessary. In terms of

these new variables, Eqs. (5)–(7) now become

o2W
oz2

þ k2
o2W

oh2
¼ M2x; ð31Þ

1

M2

o2x
oz2

þ 2z
ox
oz

þ 2x

¼ 4t
ox
ot

	 k2

M2

o2x

oh2
	 4t

M2

oW
oh

ox
oz

�
	 oW

oz
ox
oh

�

	 4t
M2

Ra A
o/
oz

�
	 Bk

o/
oh

�
; ð32Þ
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1

PrM2

o2/
oz2

þ 2z
o/
oz

¼ 4t
o/
ot

	 k2

PrM2

o2/

oh2

	 4t
M2

oW
oh

o/
oz

�
	 oW

oz
o/
oh

�
ð33Þ

and will be used to dictate the early stages of the flow

and heat transfer process. We emphasize that although

the boundary-layer coordinate, z, is utilized, the full
Navier–Stokes and energy equations are to be solved

and not the corresponding boundary-layer equations.

If R is large and t is small, then k is also small, and it
is possible to expand the flow variables in a double series

in both k and t as follows

W ¼ ðW00 þ tW01 þ � � �Þ þ kðW10 þ tW11 þ � � �Þ þOðk2Þ;

x ¼ ðx00 þ tx01 þ � � �Þ þ kðx10 þ tx11 þ � � �Þ þOðk2Þ;

/ ¼ ð/00 þ t/01 þ t2/02 þ � � �Þ þ kð/10 þ t/11 þ � � �Þ

þOðk2Þ: ð34Þ

The need for the double series becomes apparent

when the equations to OðkÞ are examined. These equa-
tions are still too complicated to solve analytically, and

so an expansion in t is also necessary to make analytical
progress. We point out, though, that the expansion in t
is actually suggested by the solution given by (28). It

would have been ideal if only a single series would suffice

as this would relax the restriction for small t. A single

expansion in the parameter k would only require that k
be small which can be achieved for larger times provided

that R is sufficiently large. We also note that the series

given by (34) results in a regular perturbation problem

as opposed to a singular perturbation problem. This is

an added advantage of working in terms of the scaled

flow variables and coordinates. The solutions given by

(26) and (28) emerge naturally from this expansion

procedure as we will point out. Also, as previously

mentioned, complexity of the solution is greatly reduced

when Pr ¼ 1. Therefore we will limit our analysis to this

special case.

In order to proceed with this expansion procedure we

will also need to expand the quantities e	nkz, A, B andM2

in a similar series. This yields

e	nkz ¼ 1	 nkzþ n2k2z2

2
	 � � � ;

Aðz; hÞ ¼ A0ðhÞ þ kzA1ðhÞ þ
k2z2

2
A0ðhÞ þ � � � ;

Bðz; hÞ ¼ B0ðhÞ þ kzB1ðhÞ þ
k2z2

2
B0ðhÞ þ � � � ;

M2ðz; hÞ ¼ M2
0 ðhÞ þ sinhð2n0Þkzþ coshð2n0Þk2z2 þ � � � ;

ð35Þ

where M2
0 ðhÞ and A0ðhÞ are defined according to (24) and

(25) respectively while A1ðhÞ, B0ðhÞ and B1ðhÞ are given
by

A1ðhÞ ¼ cosh n0 cos g cos h 	 sinh n0 sin g sin h;

B0ðhÞ ¼ cosh n0 cos g sin h þ sinh n0 sin g cos h;

B1ðhÞ ¼ sinh n0 cos g sin h þ cosh n0 sin g cos h:

ð36Þ

Substituting these expansions into Eqs. (31)–(33) and

equating like powers of k and t leads to a hierarchy of
problems at various levels of approximation. We have

explicitly determined the nonzero terms W01, x01, /00,

/02 and /10 in the series (34) and have also deduced that

W00 ¼ W10 ¼ 0, x00 ¼ x10 ¼ 0 and /01 ¼ 0. Rather than

presenting all the tedious details, which can be found in

[21], we will demonstrate the procedure for the OðtÞ
problem. Lastly, if U ¼ k/ is used in place of / then it

has been proved that

U00 ¼ U01 ¼ � � � ¼ U0n ¼ 0 for all n; ð37Þ

which confirms that the rescaling of / is unnecessary.

3.1. The O(t) problem

Collecting terms of order t in Eqs. (31) and (32) yields
the system

1

M2
0

o2W01

oz2
¼ x01; ð38Þ

1

M2
0

o2x01

oz2
þ 2z

ox01

oz
	 2x01 ¼ 	 4RaA0

M2
0

o/00

oz
: ð39Þ

In order to solve this system an equation for /00, which

comes from the Oð1Þ problem, is required; this equation,
with Pr ¼ 1, reads

1

M2
0

o2/00

oz2
þ 2z

o/00

oz
¼ 0: ð40Þ

The solution satisfying /00 ¼ 1 on z ¼ 0 and /00 ! 0 as

z ! 1 is

/00ðz; hÞ ¼ erfcðM0zÞ; ð41Þ

which is in full agreement with the previous solution

given by (26). When this is substituted into Eq. (39) the

following general solution for X01 ¼ M0x01 emerges:

X01ðs; hÞ ¼ CðhÞsþ DðhÞðe	s2 þ
ffiffiffi
p

p
serfðsÞÞ

	 2RaA0ffiffiffi
p

p e	s2 ; ð42Þ

where CðhÞ, DðhÞ are arbitrary functions of h and

s ¼ M0z. Imposing the far-field condition X01 ! 0 as

s ! 1 reveals that CðhÞ ¼ 	
ffiffiffi
p

p
DðhÞ. The remaining

unknown function DðhÞ is to be determined by satisfying
the integral conditions, which for X01 are as follows:
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Z 1

0

Z 2p

0

X01 sinðnhÞdhds ¼ pen0 cos gd1;n;

n ¼ 1; 2; . . . ;Z 1

0

Z 2p

0

X01 cosðnhÞdhds ¼ pen0 sin gd1;n;

n ¼ 0; 1; 2; . . .

ð43Þ

The final solution becomes

X01ðs; hÞ ¼
1ffiffiffi
p

p ½4en0 sinðh þ gÞ þ 2RaA0�e	s2

	 4½en0 sinðh þ gÞ þ RaA0�serfcðsÞ: ð44Þ

This solution is equivalent in form to the solution

given in (28). Lastly, the corresponding stream function,

W01, is found by integrating

o2W01

os2
¼ x01; ð45Þ

twice, subject to the boundary conditions W01 ¼ 0 and

oW01=os ¼ 0 on s ¼ 0. The resulting solution is

W01ðs;hÞ ¼
en0

M0

sinðhþ gÞserfðsÞ 	 2

3M0

½en0 sinðhþ gÞ

þ RaA0�s3erfcðsÞ þ
1

3M0

½2en0 sinðhþ gÞ

	 RaA0�
e	s2 	 1ffiffiffi

p
p

" #
þ 2

3
ffiffiffi
p

p
M0

en0 sinðh
�

þ gÞ

þ RaA0
�
s2e	s2 : ð46Þ

It is important to note that the above solution vio-

lates the far-field condition. This points to a weakness

associated with this perturbation procedure; namely that

one satisfies the no-slip and impermeability boundary

conditions at the expense of the far-field condition. It

must be remembered, though, that it is much more im-

portant to satisfy the surface conditions, since this leads

to a more accurate solution near the cylinder surface

where vorticity is generated. The consequence of not

fully satisfying the far-field condition is judged to be

negligible. The problem could be addressed by using a

matched asymptotic solution, in which case the expres-

sion forW01 (representing the inner solution) would have

to be matched to a corresponding outer solution satis-

fying the far-field condition. As one can imagine, a

matched asymptotic solution approach would require a

lot more work with very little benefit since we are pri-

marily interested in what is happening near the surface.

Lastly, we emphasize that the vorticity is constructed in

such a way that the far-field condition, x ! 0, is auto-

matically obeyed. This is because the integral conditions

make use of the far-field conditions for the stream

function.

Repeating this procedure we have found that:

/10ðs; hÞ ¼ 	 sinhð2n0Þ
2M3

0

s
2
erfcðsÞ

�
þ s2ffiffiffi

p
p e	s2

�
; ð47Þ

/02ðs; hÞ ¼ s4
�

þ 3s2 þ 3

4

� Z s

0

Kðx; hÞe	x2

ðx4 þ 3x2 þ 3=4Þ2
dx

"

	 3ffiffiffi
p

p
Z 1

0

Kðx; hÞe	x2

ðx4 þ 3x2 þ 3=4Þ2
dx

�
Z s

0

e	x2

ðx4 þ 3x2 þ 3=4Þ2
dx

#
; ð48Þ

where Kðx; hÞ is a complicated function given by

Kðx; hÞ

¼ 8E1ðhÞffiffiffi
p

p
M2
0

x6

6

��
þ 3x4

4
þ 3x2

8
þ 11

64

�
erfðxÞ

	 x8

12

�
þ x6

3
þ x4

8

�
erfcðxÞ 	 1ffiffiffi

p
p 2x5

15

�
þ 2x3

3
þ x
2

�

þ 1ffiffiffi
p

p x7

12

�
þ 11x5

24
þ 11x3

16
þ 5x
32

�
e	x2

�

þ 8E2ðhÞ
3
ffiffiffi
p

p
M2
0

1ffiffiffi
p

p x5

5

��
þ x3 þ 3x

4

�
	 51

64
erfðxÞ

	 x8

4

�
þ x6 þ 3x4

8

�
erfcðxÞ

þ 1ffiffiffi
p

p x7

4

�
þ 7x5

8
þ x3

16
þ 27x
32

�
e	x2

�
; ð49Þ

where

E1ðhÞ ¼ en0 cosðh
�

þ gÞ 	 sinðh þ gÞ sinð2hÞ
2M2

0

�
and

E2ðhÞ ¼ Ra
dA0
dh

�
	 A0 sinð2hÞ

2M2
0

�
:

The solution for x11 with Ra ¼ 0 has been found in

[3]; however, for Ra 6¼ 0 the solution is quite compli-

cated. Thus, the series solution becomes

W � tW01;

x � tx01;

/ � /00 þ t2/02 þ k/10:

ð50Þ

This approximate solution should provide informa-

tion sufficient to validate the numerical solution ob-

tained by numerically integrating Eqs. (31)–(33), which

is discussed in the following section.

4. Numerical solution procedure

From a numerical point of view, it is essential to in-

troduce the scaling U ¼ k/ since the initial temperature
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distribution given by (20) is singular, and may therefore

lead to numerical difficulties. In terms of the variable U
the surface boundary condition becomes U ¼ k on z ¼ 0

and the initial temperature distribution is simply

Uðz; h; t ¼ 0Þ ¼ 0. The corresponding equation for U is

given by

1

PrM2

o2U
oz2

þ 2z
oU
oz

þ 2U ¼ 4t
oU
ot

	 k2

PrM2

o2U

oh2

	 4t
M2

oW
oh

oU
oz

�
	 oW

oz
oU
oh

�
:

ð51Þ

The numerical method implemented to solve Eqs.

(31), (32) and (51) is a spectral-finite difference scheme

and is an extension of that outlined in [3] to include the

heat transfer equation. We begin by discretizing the

computational domain bounded by 06 z6 z1 and

06 h6 2p into a network of N � L grid points located at

zi ¼ ih; i ¼ 0; 1; . . . ;N ; ð52Þ

hj ¼ jk; j ¼ 0; 1; . . . ; L; ð53Þ

with

h ¼ z1
N

; ð54Þ

k ¼ 2p
L
: ð55Þ

Here, z1 refers to the outer boundary approximating

infinity. By placing z1 well outside the growing bound-

ary layer, this enables us to enforce the far-field condi-

tion along the line z ¼ z1. Since the physical coordinate
n ¼ kz is a moving coordinate, the outer boundary

n1 ¼ kz1 is constantly being pushed further away from

the cylinder surface. This justifies using the far-field

condition along the outer boundary n1 for all times

considered in this study.

The stream function is expanded in a truncated

Fourier series given by

Wðz; h; tÞ ¼ 1

2
F0ðz; tÞ þ

XNf

n¼1
½Fnðz; tÞ cos nh þ fnðz; tÞ sin nh�:

ð56Þ

This transforms Eq. (31) into the following sets of

equations for Fn and fn:

o2fn
oz2

	 n2k2fn ¼ rnðz; tÞ; n ¼ 1; 2; . . . ;M ; ð57Þ

o2Fn

oz2
	 n2k2Fn ¼ snðz; tÞ; n ¼ 0; 1; . . . ;M : ð58Þ

The functions rnðz; tÞ and snðz; tÞ are defined as

rnðz; tÞ ¼
1

p

Z 2p

0

M2x sin nhdh; n ¼ 1; 2; . . . ;M ; ð59Þ

snðz; tÞ ¼
1

p

Z 2p

0

M2x cos nhdh; n ¼ 0; 1; . . . ;M : ð60Þ

Boundary conditions for Fn and fn follow from the

no-slip, impermeability and the far-field conditions

which become

F0ð0; tÞ ¼ 0; Fnð0; tÞ ¼ 0; fnð0; tÞ ¼ 0; ð61Þ

oF0
oz

¼ 0;
oFn

oz
¼ 0;

ofn
oz

¼ 0 on z ¼ 0 for all t; ð62Þ

e	kzF0 ! 0; e	kzFn !
1

2k
ten0 sin gd1;n;

e	kzfn !
1

2k
ten0 cos gd1;n as z ! 1 ð63Þ

and

e	kz oF0
oz

! 0; e	kz oFn

oz
! 1

2
ten0 sin gd1;n;

e	kz ofn
oz

! 1

2
ten0 cos gd1;n as z ! 1; ð64Þ

for n ¼ 1; 2; . . . ;Nf . Lastly, the integral conditions can

be formulated in terms of rnðz; tÞ and snðz; tÞ as follows:Z 1

0

e	nkzrnðz; tÞdz ¼ ten0 cos gd1;n; ð65Þ

Z 1

0

e	nkzsnðz; tÞdz ¼ ten0 sin gd1;n; ð66Þ

Z z1

0

s0ðz; tÞdz ¼ 0: ð67Þ

Eqs. (57) and (58) at a fixed value of t are of the form

h00ðzÞ 	 b2hðzÞ ¼ pðzÞ; ð68Þ

where b ¼ nk and the prime refers to differentiation with
respect to z. These ordinary differential equations can be
integrated using step-by-step formulae. The important

point to note here is that the particular marching algo-

rithm to be used is dependent on the parameter b.
Dennis and Chang [22] have found that most step-by-

step procedures become increasingly unstable as b be-

comes large. Hence, two sets of step-by-step methods

were utilized: one for b < 0:5 while another one for

b P 0:5. The specific schemes used will not be presented;
however, these details can be found in Staniforth [17].

The vorticity and heat transport equations (32) and

(51) are solved by finite differences. The scheme used to

approximate these equations is very similar to the

Crank–Nicolson implicit procedure. These equations

may be cast in the generic form given by

t
ov
ot

¼ qðz; h; tÞ; ð69Þ

where v represents either x or U and q the corresponding
right-hand side. Assuming the solution at time t is
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known, let us advance the solution to time t þ Dt by
integrating Eq. (69). Integration by parts yields

vsjtþDt
t 	

Z tþDt

t
vds ¼

Z tþDt

t
qds; ð70Þ

where Dt is the time increment. Approximation of the
integrals using the trapezoidal rule yields the expression

vðz; h; t þ DtÞ ¼ vðz; h; tÞ þ Dt
2t þ Dt

� �
� ½qðz; h; t þ DtÞ þ qðz; h; tÞ�: ð71Þ

Since qðz; h; t þ DtÞ depends on xðz; h; t þ DtÞ or

Uðz; h; t þ DtÞ and their spatial derivatives, the scheme is
implicit. Eq. (71) is solved iteratively using the Gauss–

Seidel procedure where all spatial derivatives appearing

in q are approximated using central differences.
The boundary conditions used in solving the vorticity

transport equation include

xðz; h; tÞ ¼ xðz; h þ 2p; tÞ and xðz1; h; tÞ ¼ 0; ð72Þ

while for the heat transport equation we impose

Uðz ¼ 0; h; tÞ ¼ k;Uðz; h; tÞ ¼ Uðz; h þ 2p; tÞ and

Uðz1; h; tÞ ¼ 0: ð73Þ

The surface vorticity can be determined by inverting (59)

and (60); this leads to

xð0; h; tÞ ¼ 1

M2
0

1

2
s0ð0; tÞ

(
þ
XNf

n¼1
½rnð0; tÞ sin nh

þ snð0; tÞ cos nh�
)
: ð74Þ

To initiate the integration procedure we use the ini-

tial conditions for W, x and U which are provided by the

analytical solution. These are the trivial solutions

Wðz; h; t ¼ 0Þ ¼ xðz; h; t ¼ 0Þ ¼ Uðz; h; t ¼ 0Þ ¼ 0: ð75Þ

It may also be necessary to subject the surface vor-

ticity to under-relaxation in order to obtain con-

vergence. Convergence is reached when the difference

between two successive iterates of the surface vorticity,

jxðkþ1Þð0; h; tÞ 	 xðkÞð0; h; tÞj, falls below some specified

tolerance e. Also, the integrals appearing in (59) and (60)
were evaluated by Filon integration [23] in order to

guarantee consistent accuracy for all n. This technique
bears a close resemblance to Simpson�s rule with the

exception that only the unknown numerically deter-

mined part of the integrand is approximated by a pa-

rabola over three successive grid points rather than the

entire integrand. Lastly, we point out that the scheme

described here is tailored to capture the essential physics

of the early stages of the flow and heat transfer process.

5. Results and comparisons

The flow is characterized by the following dimen-

sionless parameters: R, Ra, Pr, r and g. The numerical
simulations carried out in this work focussed on the

Reynolds number range 50–1000 with emphasis on

R ¼ 500. We have fixed the parameters Pr, r and g to

assume the values Pr ¼ 1, g ¼ 45� and r ¼ 0:5 and have
allowed the Rayleigh number to vary from 0 to 10. By

restricting Ra to this range, the Boussinesq approxima-
tion should remain valid.

To confirm numerical convergence, computations

were carried out using two different grids: a fine grid

having N � L ¼ 161� 121, and a coarse grid having

N � L ¼ 101� 81. In Fig. 2 the time variation of the

drag coefficient, CD, is shown using these different grids

for the case R ¼ 500 and Ra ¼ 1. The diagram shows

some dependence on the grid for t > 2:5; however, finer
grids produced negligible additional change. Similar

agreement was observed with the lift coefficient, CL.

Another important computational parameter is the

outer boundary location z1. We have experimented with
two different values of z1: z1 ¼ 6 and z1 ¼ 10. Dis-

played in Fig. 3 is a comparison in the time variation of

the lift coefficient using these values of z1 again for the

case R ¼ 500 and Ra ¼ 1. It is clear from Fig. 3 that the

results are weakly dependent on z1. From these exper-

iments and others we have decided to use the fine grid

and z1 ¼ 10 in our computations. Other computational

parameters used include a relaxation parameter in the

range 0.5–0.75, Nf ¼ 25 terms of the Fourier series, and

a typical tolerance value of e ¼ 10	6. The number of

terms retained in the series was suggested by examining

the analytical solution. The analytical solution was also

used to verify that the value of z1 ¼ 10 was appropriate.

Initial time steps of 10	4 were used for the first 10 ad-

vances. Then, the next 10 time steps were proceeded with

Dt ¼ 10	3 and continued after with Dt ¼ 10	2. Further

accuracy checks were conducted by comparing the nu-

merical results with the analytical solution previously

derived, and forms the main contribution of this study.

The dimensionless drag and lift coefficients were

computed using the formulae

X ¼ 2 sinh n0
R

Z 2p

0

of
on

� �
0

sinðhÞdh 	 2 cosh n0
R

�
Z 2p

0

f0 sinðhÞdh 	 pRa sinh n0 cosh n0 sin g; ð76Þ

Y ¼ 	 2 cosh n0
R

Z 2p

0

of
on

� �
0

cosðhÞdh þ 2 sinh n0
R

�
Z 2p

0

f0 cosðhÞdh 	 pRa sinh n0 cosh n0 cos g: ð77Þ

Since the above forces are directed along the x–y
axis shown in Fig. 1, the dimensionless drag and lift
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coefficients in the horizontal and vertical directions then

become

CD ¼ X cosðgÞ 	 Y sinðgÞ; ð78Þ

CL ¼ Y cosðgÞ þ X sinðgÞ: ð79Þ

A derivation of these formulae is included in the

Appendix A. The heat transfer coefficients, Nu and Nu,
were determined using the formulae

Nu ¼ 	 2

M0

o/
on

� �
n¼0

;

Fig. 3. Time variation of the lift coefficient using different outer boundary locations for the case R ¼ 500, Ra ¼ 1.

Fig. 2. Time variation of the drag coefficient using different grids for the case R ¼ 500, Ra ¼ 1.
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Nu ¼ 1

2p

Z 2p

0

Nudh: ð80Þ

5.1. Comparison of numerical results with analytical

solution

While convergence of the numerical scheme has been

demonstrated by comparing results using different grid

sizes and outer boundary locations, we can further jus-

tify the numerics against the analytical solution found in

Section 3. Additional checks were made by carrying out

simulations with Ra ¼ 0 and comparing the flow prop-

erties with those reported in [3]. Excellent agreement was

obtained.

Using the approximation given by (50) for the vor-

ticity, we are able to predict time variations for the drag

and lift coefficients which will be valid for small times.

These expressions become

CD � 	pðsin2 g þ en0 sinh n0Þ 	 2en0

ffiffiffiffiffiffi
2t
pR

r
� ða1 cosh n0 cos

2 g þ a2 sinh n0 sin
2 gÞ

þ Ra sin g cos g

ffiffiffiffiffiffi
2t
pR

r
ða1 cosh2 n0 	 a2 sinh

2 n0Þ;

ð81Þ

CL � p sin g cos g þ 2en0 sin g cos g

ffiffiffiffiffiffi
2t
pR

r
ða2 sinh n0

	 a1 cosh n0Þ þ Ra

ffiffiffiffiffiffi
2t
pR

r
ða2 sinh2 n0 cos

2 g

þ a1 cosh
2 n0 sin

2 gÞ; ð82Þ

where

Fig. 4. Distributions of the Nusslet number for R ¼ 500, Ra ¼ 1 at times: (a) t ¼ 0:1, (b) t ¼ 0:5, and (c) t ¼ 1.
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a1 ¼
Z 2p

0

sin2 h
M0

dh ’ 3:1035

and

a2 ¼
Z 2p

0

cos2 h
M0

dh ’ 4:3668 for r ¼ 1

2
:

We can similarly derive formulae for Nu and Nu valid
for small times. The following expressions emerge:

Nuðh; tÞ �
ffiffiffiffiffiffi
2R
pt

r
þ sinhð2n0Þ

2M3
0

þ
ffiffiffiffiffiffiffiffiffi
8Rt3

p

r Z 1

0

Kðs; hÞe	s2

ðs4 þ 3s2 þ 3=4Þ2
ds; ð83Þ

NuðtÞ � a3 sinhð2n0Þ
2

þ
ffiffiffiffiffiffi
2R
pt

r
; ð84Þ

where

a3 ¼
1

2p

Z 2p

0

dh
M3
0

’ 2:0031 for r ¼ 1

2
:

It has been proved thatZ 2p

0

Z 1

0

Kðs; hÞe	s2

ðs4 þ 3s2 þ 3=4Þ2
dsdh ¼ 0 for all 0 < r < 1:

Note that at t ¼ 0 both Nu and Nu are singular; this is
due to the initial configuration. At t ¼ 0 the surface is

held at T0 while the surrounding fluid is fixed at T1. This

means that the temperature gradient on the surface will

initially be infinite. With the passage of time this gra-

dient rapidly decays due to molecular diffusion. Also, at

this level of approximation NuðtÞ does not depend ex-
plicitly on Ra while Nuðh; tÞ does, by virtue of the

function Kðs; hÞ (see Eq. (49)). This finding is supported
by our numerical simulations.

We next present comparisons between the analytical

predictions and the numerical results for the case Ra ¼ 1

and R ¼ 500 (as previously stated Pr ¼ 1, r ¼ 0:5 and
g ¼ 45� for all simulations). Contrasted in Fig. 4a–c are

distributions of Nuðh; tÞ at times t ¼ 0:1, 0.5, 1 respec-
tively. Initially, the rate of heat transfer is the same on

the top and bottom halves of the cylinder, but the plots

at later times reveal that this symmetry is short lived.

The agreement between the analytical and numerical

solutions is quite reasonable even at t ¼ 1. The time

variation of the average Nusselt number, portrayed in

Fig. 5, exhibits a rapid algebraic decrease in NuðtÞ with
excellent agreement between the two solutions. Illus-

trated in Fig. 6a–c are scaled surface vorticity plots at

times t ¼ 0:1, 0.5, 1 respectively. These distributions

clearly reveal how the agreement between the analytical

and numerical solutions worsens as time marches on.

This type of agreement is to be expected and the reason

it is more evident in the surface vorticity plots than it is

in the Nu plots is likely the fact that only one term in the

vorticity series was found compared to the three terms

found in the temperature series. Lastly, displayed in Fig.

7a and b are time variations of the drag and lift coeffi-

cients respectively. Included in Fig. 7a is a semi-analyt-

ical Oð
ffiffi
t

p
Þ correction to improve the agreement with the

fully numerical result.

We next present more numerical results beginning

with the case of forced convection.

Fig. 5. Time variation of the average Nusslet number for R ¼ 500, Ra ¼ 1.
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Fig. 6. Distributions of the surface vorticity for R ¼ 500, Ra ¼ 1 at times: (a) t ¼ 0:1, (b) t ¼ 0:5 and (c) t ¼ 1.

Fig. 7. Time variation of the (a) drag and (b) lift coefficients for R ¼ 500, Ra ¼ 1.
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5.2. Forced convection case

Forced convection is a limiting case having Ra ¼ 0.

In forced convection the temperature equation becomes

decoupled from the Navier–Stokes equations; conse-

quently, the heat transfer process has no influence on the

flow, and the temperature can be computed after the

flow field has been determined.

We have carried out simulations for R ¼ 100, 500,

1000 and have observed a weak dependence on R for this
Reynolds number range. Streamline plots for the case

R ¼ 500 are shown in Fig. 8a–e (while the cases R ¼ 100

and R ¼ 1000 are included in [3]). In all streamline plots

to be presented the values of the streamlines plotted

from top to bottom in each diagram correspond to:

w ¼ 0:9;0:8;0:7;0:6;0:5;0:4;0:3;0:2;0:1;0:05;0;	0:05;
	 0:1;	0:2;	0:3;	0:4;	0:5;	0:6;	0:7;	0:8;	0:9:

The plots reveal that vortex shedding from the

trailing tip takes place between t ¼ 1 and t ¼ 1:5 and
that a vortex forms and grows on the top half of the

cylinder during the interval 2 < t < 3. Also apparent is

that the spacing between consecutive streamlines de-

creases with time due to the continually increasing far-

field velocity.

The isotherm plots shown in Fig. 9a–e further sup-

port the flow features. In all isotherm plots to be pre-

Fig. 8. Streamline plots for R ¼ 500, Ra ¼ 0 at times: (a) t ¼ 1,

(b) t ¼ 1:5, (c) t ¼ 2, (d) t ¼ 2:5 and (e) t ¼ 3.

Fig. 9. Isotherm plots for R ¼ 500, Ra ¼ 0 at times: (a) t ¼ 1,

(b) t ¼ 1:5, (c) t ¼ 2, (d) t ¼ 2:5 and (e) t ¼ 3.
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sented, the difference in temperature between consecu-

tive contours is 0.1; the outermost contour corresponds

to / ¼ 0:2, and the innermost contour denotes the cyl-
inder surface maintained at / ¼ 1. The plots illustrate

the formation of a thermal wake and the vortex shed-

ding process, and that the rate of heat transfer is greatest

at the leading tip and bottom half of the ellipse.

Displayed in Figs. 10 and 11 are distributions of

Nusselt number and surface vorticity respectively for

R ¼ 500 at various times. These plots illustrate how

Fig. 10. Distributions of the Nusselt number for R ¼ 500, Ra ¼ 0 at times t ¼ 1; 2; 3.

Fig. 11. Distributions of the surface vorticity for R ¼ 500, Ra ¼ 0 at times t ¼ 1; 2; 3.
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surface variations become more pronounced in the vi-

cinity of the tips as time elapses. Shown in Fig. 12a and

b are time variations of the drag and lift coefficients

respectively for R ¼ 100, 500, 1000. These plots reveal an

initially slow decrease (increase) followed by a much

more rapid decrease (increase) after t ¼ 1 in CD (CL).

They also show little dependence on R, especially be-
tween R ¼ 500 and R ¼ 1000.

5.3. Mixed convection case

To study the case of mixed convection we first fixed

the Reynolds number to R ¼ 500 and varied the Ray-

leigh number. To understand the influence on the rate of

heat transfer, simulations were carried out for the values

Ra ¼ 1, 5, 10. Little change between the forced convec-

tion case and that having Ra ¼ 1 was found. The only

difference worth mentioning is that vortex shedding

from the trailing tip was delayed.

Significant changes during the initial stages of the

flow were apparent when Ra was increased further to 5
and 10. Some common features noticed for Ra ¼ 5, 10

are as follows. Buoyancy forced the fluid to flow around

the trailing tip rather than getting advected downstream.

Also, shed vortices tended initially to rise with negligible

advection due to the blockage provided by the cylinder.

Further, shed vortices began to interact with each other

forming counter-rotating vortex pairs. Merging of vor-

tices did not take place; instead, the vortex pair grew to

the stage where the cylinder could no longer shield them

from the oncoming flow. Consequently, they slowly

made their way downstream. Increasing Ra enhanced

the buoyancy force which reduced the rising time of the

shed vortices and delayed vortex shedding. The outcome

of this is that less interaction between the shed vortices

was noticed for Ra ¼ 10 compared to Ra ¼ 5. Fig. 13a–e

illustrate the above features for the case Ra ¼ 10. The

Fig. 12. Time variation of the (a) drag and (b) lift coefficients for R ¼ 100, 500, 1000 with Ra ¼ 0.

Fig. 13. Streamline plots for R ¼ 500, Ra ¼ 10 at times: (a)

t ¼ 1, (b) t ¼ 1:5, (c) t ¼ 2, (d) t ¼ 2:5 and (e) t ¼ 3.
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corresponding isotherm plots, displayed in Fig. 14a–e,

clearly portray the formation and eruption of a thermal

plume from the surface near the leading tip. The thermal

plume is seen to extend downstream beyond the thermal

wake. The thermal plume also had obvious impacts on

the Nusselt number and surface vorticity distributions.

Fig. 14. Isotherm plots for R ¼ 500, Ra ¼ 10 at times: (a) t ¼ 1, (b) t ¼ 1:5, (c) t ¼ 2, (d) t ¼ 2:5 and (e) t ¼ 3.

Fig. 15. Time variation of the (a) drag and (b) lift coefficients for Ra ¼ 1, 5, 10 with R ¼ 500.
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Shown in Fig. 15a–b are time variations of the drag and

lift coefficients respectively, for Ra ¼ 1, 5, 10. While a

weak dependence with Ra is noticed on the drag, a

profound effect takes place with the lift. Initially, CL

increases slowly with time. Later, however, the lift not

only begins to decrease with increasing Ra; it also be-
comes negative. The plots suggest, though, that this is a

temporary stall, as the curves are seen to level out near

t ¼ 3.

To more thoroughly explore the mixed convection

regime as well as to make some predictions into the

behaviour of the flow for large times, simulations for the

cases R ¼ 50, Ra ¼ 10 and R ¼ 50, Ra ¼ 0 were per-

formed and contrasted for times up to t ¼ 10. Selected

streamline and isotherm snapshots are illustrated in

Figs. 16a–e and 17a–e respectively for the times t ¼ 3, 4,

6, 7, 10 for the case R ¼ 50, Ra ¼ 10. The accelerating

flow, vortex shedding process, and thermal plume evo-

lution are all clearly evident in these plots. When these

plots were compared with the corresponding ones for

the forced convection case Ra ¼ 0 and R ¼ 50, it be-

comes apparent that as time increases the flow patterns

become more and more similar. This is not the case

during the early stages of the flow though. Based on

these comparisons we can make some intuitive extra-

Fig. 16. Streamline plots for R ¼ 50, Ra ¼ 10 at times: (a)

t ¼ 3, (b) t ¼ 4, (c) t ¼ 6, (d) t ¼ 7 and (e) t ¼ 10.

Fig. 17. Isotherm plots for R ¼ 50, Ra ¼ 10 at times: (a) t ¼ 3,

(b) t ¼ 4, (c) t ¼ 6, (d) t ¼ 7 and (e) t ¼ 10.
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polations into the flow behaviour for large times. We

expect that advection will eventually dominate over

buoyancy as time advances due to the accelerating na-

ture of the flow. Thus, the effect of buoyancy will have

the greatest impact on the flow during the initial stages

when the flow velocities are relatively small. For larger

times the flow appears to approach that of forced con-

vection. We suspect that this eventual behaviour will

occur regardless of the values of R and Ra; the only
difference will be in the time taken to approach the limit

of forced convection.

6. Conclusions

Reported in this paper was the start-up thermal-fluid

problem associated with a stationary isothermal inclined

elliptic cylinder placed in a uniformly accelerating vis-

cous incompressible Boussinesq fluid. Two forms of

solution were presented: an approximate analytical se-

ries solution expressed in powers of t and k as well as a
numerical technique involving both finite difference and

spectral methods. Both solutions were found to be in

good agreement for small times and moderately large

Reynolds numbers.

This work attempts to highlight the importance of

the analytical solution. Here, it provided invaluable in-

formation regarding the early flow and heat transfer

process. Not only was it used to verify that the numer-

ical scheme was running correctly, more importantly it

furnished actual formulae for practical quantities such

as the drag, lift and Nusselt number. For instances

where the initial conditions are not well behaved, such as

cases when the body is started impulsively from rest, the

analytical solution can be used to generate an initial

condition at a time slightly past the impulsive start when

the solution becomes well behaved. In addition it pro-

vided information regarding the values of some of the

computational parameters such as the number of terms

required in the truncated Fourier series as well as the

location of the outer boundary. This helps to reduce the

number of computational runs which would otherwise

be necessary in order to determine these values empiri-

cally. Lastly, since the geometry considered is flexible,

the analytical solution applies to all elliptical cross sec-

tions and by taking appropriate limits it may even apply

to the special cases of a flat plate and circular cylinder.

We note, though, that there are unanswered questions

surrounding the series solution found. For example,

what is the interval of convergence of the solution with

respect to the parameters t and k?
Some interesting phenomena during the initial stages

of the flow have been reported owing to the buoyancy

force. One important observation is that increasing Ra
has the effect of delaying the vortex shedding process. In

addition, increasing Ra enhances the formation of a

thermal plume near the leading tip which grows larger in

extent than the thermal wake formed behind the trailing

tip. Most notably, the lift coefficient is significantly de-

pendent on Ra; at later times it begins to decrease and
becomes negative. However, this trend is not expected to

last. For larger times, though, the flow is expected to

resemble that of forced convection due to the steady

increase in the velocity field.
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Appendix A. Derivation of drag and lift coefficients

Outlined below is a brief derivation of the drag and

lift coefficients CD and CL respectively. The unsteady

dimensional momentum equations for a viscous in-

compressible fluid expressed in primitive variables can

be written in vector form as

o~VV
ot

	 ð~VV � ~WW Þ ¼ 	r P
q0

�
þ 1

2
~VV � ~VV

�
	 mr� ~WW þ q

q0

� �
~gg;

ðA:1Þ

where ~gg ¼ 	gðsin g; cos g; 0Þ and q=q0 ¼ 1	 aðT 	 T1Þ.
Here, ~VV ¼ ðu; v; 0Þ is the velocity in the accelerating

frame of reference, ~WW ¼ r� ~VV ¼ ð0; 0; fÞ and P denotes
the pressure. In dimensionless form the above can be

rewritten as

o~VV
ot

	 ð~VV � ~WW Þ ¼ 	r P �
�

þ 1

2
~VV � ~VV

�
	 2

R
r� ~WW

þ Ra/ðsin g; cos g; 0Þ; ðA:2Þ

where P � ¼ P=q0 þ G with G denoting the potential

satisfying rG ¼ 	~gg=b	 ð1; 0; 0Þ, in which ð1; 0; 0Þ is the
dimensionless translational acceleration of the cylinder.

The h-component of the above equation becomes

ovh

ot
þ vnf ¼ 	 1

M
o

oh
P �
�

þ 1

2
½v2n þ v2h�

�
þ 2

RM
of
on

þ 1

M
Ra/ðsinhðn þ n0Þ cos g cos h

	 coshðn þ n0Þ sin g sin hÞ: ðA:3Þ

On the cylinder surface (A.3) simplifies greatly owing to

the impermeability, no-slip and isothermal conditions,

vn ¼ vh ¼ 0 and / ¼ 1, and becomes
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oP �

oh

� �
n¼0

¼ 2

R
of
on

� �
n¼0

þ Raðsinh n0 cos g cos h

	 cosh n0 sin g sin hÞ: ðA:4Þ

The forces in the x and y directions, X and Y respec-

tively, can be obtained by integrating the pressure and

frictional stresses on the surface as follows:

X ¼ 	
I

C
P �
0 dy þ

2

R

I
C

f0 dx;

Y ¼
I

C
P �
0 dxþ

2

R

I
C

f0 dy:

Making use of (A.4) and simplifying then leads to Eqs.

(76) and (77).
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